Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors.
نویسندگان
چکیده
The cytochrome P450 epoxygenase (CYP)-derived metabolites of arachidonic acid the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2) both function as endothelium-derived hyperpolarizing factors (EDHFs) in the human coronary microcirculation. However, the relative importance of and potential interactions between these 2 vasodilators remain unexplored. We identified a novel inhibitory interaction between CYPs and H2O2 in human coronary arterioles, where EDHF-mediated vasodilatory mechanisms are prominent. Bradykinin induced vascular superoxide and H2O2 production in an endothelium-dependent manner and elicited a concentration-dependent dilation that was reduced by catalase but not by 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE), 6-(2-propargyloxyphenyl)hexanoic acid, sulfaphenazole, or iberiotoxin. However, in the presence of catalase, an inhibitory effect of these compounds was unmasked. In a tandem-bioassay preparation, application of bradykinin to endothelium-intact donor vessels elicited dilation of downstream endothelium-denuded detectors that was partially inhibited by donor-applied catalase but not by detector-applied EEZE; however, EEZE significantly inhibited dilation in the presence of catalase. EET production by human recombinant CYP 2C9 and 2J2, 2 major epoxygenase isozymes expressed in human coronary arterioles, was directly inhibited in a concentration-dependent fashion by H2O2 in vitro, as observed by high-performance liquid chromatography (HPLC); however, EETs were not directly sensitive to oxidative modification. H2O2 inhibited dilation to arachidonic acid but not to 11,12-EET. These findings suggest that an inhibitory interaction exists between 2 EDHFs in the human coronary microcirculation. CYP epoxygenases are directly inhibited by H2O2, and this interaction may modulate vascular EET bioavailability.
منابع مشابه
Endothelium-derived epoxyeicosatrienoic acids and vascular function.
Epoxyeicosatrienoic acids (EETs) are epoxides of arachidonic acid generated by cytochrome P450 (CYP) epoxygenases. The activation of CYP epoxygenases in endothelial cells is an important step in the NO and prostacyclin-independent vasodilatation of several vascular beds, and EETs have been identified as an endothelium-derived hyperpolarizing factor. However, EETs also exert membrane potential-i...
متن کاملUp-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways.
Cytochrome P450 (P450)-dependent metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are proposed to be endothelium-derived hyperpolarizing factors (EDHF) that affect vascular tone; however, the effects of EDHF on endothelial-derived nitric oxide biosynthesis remain unknown. We examined the regulation of endothelial nitric-oxide synthase (eNOS) by EDHF and investigated the re...
متن کاملNifedipine increases cytochrome P4502C expression and endothelium-derived hyperpolarizing factor-mediated responses in coronary arteries.
In addition to NO and prostacyclin, endothelial cells release a factor that elicits vasodilatation by hyperpolarizing the underlying vascular smooth muscle cells. In some vascular beds, this so-called endothelium-derived hyperpolarizing factor (EDHF) displays the characteristics of a cytochrome P450 (CYP)-derived arachidonic acid metabolite, such as an epoxyeicosatrienoic acid. Native porcine a...
متن کاملEndothelium-derived hyperpolarizing factor: where are we now?
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses inv...
متن کاملEndothelium - Derived Hyperpolarizing Factor Where Are We Now ? Michel Félétou , Paul
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 102 1 شماره
صفحات -
تاریخ انتشار 2008